UDUC: An Uncertainty-driven Approach for Learning-based Robust Control

4 May 2024  ·  Yuan Zhang, Jasper Hoffmann, Joschka Boedecker ·

Learning-based techniques have become popular in both model predictive control (MPC) and reinforcement learning (RL). Probabilistic ensemble (PE) models offer a promising approach for modelling system dynamics, showcasing the ability to capture uncertainty and scalability in high-dimensional control scenarios. However, PE models are susceptible to mode collapse, resulting in non-robust control when faced with environments slightly different from the training set. In this paper, we introduce the $\textbf{u}$ncertainty-$\textbf{d}$riven rob$\textbf{u}$st $\textbf{c}$ontrol (UDUC) loss as an alternative objective for training PE models, drawing inspiration from contrastive learning. We analyze the robustness of UDUC loss through the lens of robust optimization and evaluate its performance on the challenging Real-world Reinforcement Learning (RWRL) benchmark, which involves significant environmental mismatches between the training and testing environments.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here