Sampling-based 3-D Line-of-Sight PWA Model Predictive Control for Autonomous Rendezvous and Docking with a Tumbling Target

30 Jul 2020  ·  Dongting Li, Rui-Qi Dong, Yanning Guo, Guangtao Ran, Dongyu Li ·

In this paper, a model predictive control (MPC) framework is employed to realize autonomous rendezvous and docking (AR&D) with a tumbling target, using the piecewise affine (PWA) model of the 3-D line-of-sight (LOS) dynamics and Euler attitude dynamics. Consider the error between the predictions obtained by the approximate linear model and the actual states of nonlinear dynamics, a sampling-based PWA MPC is proposed to sample the predictions in the closer neighborhood of the actual states. Besides, novel constructions of constraints are presented to reduce the on-board computation cost and time-delay. Furthermore, a singularity-free strategy is provided to realize crossing the singularity of angle states smoothly. Then, the mission is achieved by continuous 6-DOF pose (position and attitude) tracking of the target's docking port, with the coupling between the position and attitude of the target's docking port is taken into account. Finally, numerical results are presented to demonstrate the above theories.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here