Nonlinear modeling and feedback control of boom barrier automation

27 Sep 2021  ·  Daniel Cunico, Angelo Cenedese, Luca Zaccarian, Mauro Borgo ·

We address modeling and control of a gate access automation system. A model of the mechatronic system is derived and identified. Then an approximate explicit feedback linearization scheme is proposed, which ensures almost linear response between the external input and the delivered torque. A nonlinear optimization problem is solved offline to generate a feasible trajectory associated with a feedforward action and a low level feedback controller is designed to track it. The feedback gains can be conveniently tuned by solving a set of convex linear matrix inequalities, performing a multi-objective trade-off between disturbances attenuation and closed-loop performance. Finally, the proposed control strategy is tested on the real system and experimental results show that it can effectively meet the requirements in terms of robustness, load disturbance rejection and tracking performance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here