Learning Collective Variables with Synthetic Data Augmentation through Physics-inspired Geodesic Interpolation

2 Feb 2024  ·  Soojung Yang, Juno Nam, Johannes C. B. Dietschreit, Rafael Gómez-Bombarelli ·

In molecular dynamics simulations, rare events, such as protein folding, are typically studied using enhanced sampling techniques, most of which are based on the definition of a collective variable (CV) along which acceleration occurs. Obtaining an expressive CV is crucial, but often hindered by the lack of information about the particular event, e.g., the transition from unfolded to folded conformation. We propose a simulation-free data augmentation strategy using physics-inspired metrics to generate geodesic interpolations resembling protein folding transitions, thereby improving sampling efficiency without true transition state samples. Leveraging interpolation progress parameters, we introduce a regression-based learning scheme for CV models, which outperforms classifier-based methods when transition state data are limited and noisy.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here