Search Results for author: Farbod Roosta-Khorasani

Found 10 papers, 0 papers with code

GPU Accelerated Sub-Sampled Newton's Method

no code implementations26 Feb 2018 Sudhir B. Kylasa, Farbod Roosta-Khorasani, Michael W. Mahoney, Ananth Grama

In particular, in convex settings, we consider variants of classical Newton\textsf{'}s method in which the Hessian and/or the gradient are randomly sub-sampled.

Second-order methods

Out-of-sample extension of graph adjacency spectral embedding

no code implementations ICML 2018 Keith Levin, Farbod Roosta-Khorasani, Michael W. Mahoney, Carey E. Priebe

Many popular dimensionality reduction procedures have out-of-sample extensions, which allow a practitioner to apply a learned embedding to observations not seen in the initial training sample.

Dimensionality Reduction Position

Invariance of Weight Distributions in Rectified MLPs

no code implementations ICML 2018 Russell Tsuchida, Farbod Roosta-Khorasani, Marcus Gallagher

An interesting approach to analyzing neural networks that has received renewed attention is to examine the equivalent kernel of the neural network.

GIANT: Globally Improved Approximate Newton Method for Distributed Optimization

no code implementations NeurIPS 2018 Shusen Wang, Farbod Roosta-Khorasani, Peng Xu, Michael W. Mahoney

For distributed computing environment, we consider the empirical risk minimization problem and propose a distributed and communication-efficient Newton-type optimization method.

Distributed Computing Distributed Optimization

Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

no code implementations25 Aug 2017 Peng Xu, Farbod Roosta-Khorasani, Michael W. Mahoney

While first-order optimization methods such as stochastic gradient descent (SGD) are popular in machine learning (ML), they come with well-known deficiencies, including relatively-slow convergence, sensitivity to the settings of hyper-parameters such as learning rate, stagnation at high training errors, and difficulty in escaping flat regions and saddle points.

BIG-bench Machine Learning Second-order methods

Sub-sampled Newton Methods with Non-uniform Sampling

no code implementations NeurIPS 2016 Peng Xu, Jiyan Yang, Farbod Roosta-Khorasani, Christopher Ré, Michael W. Mahoney

As second-order methods prove to be effective in finding the minimizer to a high-precision, in this work, we propose randomized Newton-type algorithms that exploit \textit{non-uniform} sub-sampling of $\{\nabla^2 f_i(w)\}_{i=1}^{n}$, as well as inexact updates, as means to reduce the computational complexity.

Second-order methods

FLAG n' FLARE: Fast Linearly-Coupled Adaptive Gradient Methods

no code implementations26 May 2016 Xiang Cheng, Farbod Roosta-Khorasani, Stefan Palombo, Peter L. Bartlett, Michael W. Mahoney

We consider first order gradient methods for effectively optimizing a composite objective in the form of a sum of smooth and, potentially, non-smooth functions.

Sub-Sampled Newton Methods II: Local Convergence Rates

no code implementations18 Jan 2016 Farbod Roosta-Khorasani, Michael W. Mahoney

In such problems, sub-sampling as a way to reduce $n$ can offer great amount of computational efficiency.

Computational Efficiency Second-order methods

Sub-Sampled Newton Methods I: Globally Convergent Algorithms

no code implementations18 Jan 2016 Farbod Roosta-Khorasani, Michael W. Mahoney

As a remedy, for all of our algorithms, we also give global convergence results for the case of inexact updates where such linear system is solved only approximately.

Cannot find the paper you are looking for? You can Submit a new open access paper.