When Geoscience Meets Foundation Models: Towards General Geoscience Artificial Intelligence System

13 Sep 2023  ·  Hao Zhang, Jin-Jian Xu, Hong-Wei Cui, Lin Li, Yaowen Yang, Chao-Sheng Tang, Niklas Boers ·

Geoscience foundation models (GFMs) represent a revolutionary approach within Earth sciences to integrate massive cross-disciplinary data for improved simulation and understanding of Earth system dynamics. As a data-centric artificial intelligence paradigm, GFMs extract valuable insights from petabytes of both structured and unstructured data. Their versatility in task specification, diverse inputs and outputs, and multi-modal knowledge representation enable a comprehensive analysis that surpasses the capabilities of individual data sources. Critically, the scalability and generalizability of GFMs empower them to address a wide array of prediction, simulation, and decision tasks related to the intricate interactions among Earth system components. By unraveling the causal mechanisms underlying observed patterns and changes, GFMs contribute to advancing our knowledge of the Earth system and its responses to various drivers and perturbations. Collaboration between domain experts and computer scientists plays a pivotal role in fostering innovations in these invaluable tools for understanding the past, present, and future of our planet. Moreover, we introduce recent advances including key technologies for constructing GFMs, especially remote sensing applications. However, challenges remain in validation and verification, scalability, interpretability, knowledge representation, and addressing social bias. Going forward, the key lies in enhancing model integration, resolution, accuracy, and equity through interdisciplinary teamwork. Despite current limitations, GFMs hold great promise for providing critical insights into pressing issues including climate change, natural hazards, and sustainability through their ability to explore multiple scenarios and quantify uncertainties. Their continued evolution toward integrated, data-driven modeling holds paradigm-shifting potential for Earth science.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here