Wavelet-Packets for Deepfake Image Analysis and Detection

17 Jun 2021  ·  Moritz Wolter, Felix Blanke, Raoul Heese, Jochen Garcke ·

As neural networks become able to generate realistic artificial images, they have the potential to improve movies, music, video games and make the internet an even more creative and inspiring place. Yet, the latest technology potentially enables new digital ways to lie. In response, the need for a diverse and reliable method toolbox arises to identify artificial images and other content. Previous work primarily relies on pixel-space CNNs or the Fourier transform. To the best of our knowledge, synthesized fake image analysis and detection methods based on a multi-scale wavelet representation, localized in both space and frequency, have been absent thus far. The wavelet transform conserves spatial information to a degree, which allows us to present a new analysis. Comparing the wavelet coefficients of real and fake images allows interpretation. Significant differences are identified. Additionally, this paper proposes to learn a model for the detection of synthetic images based on the wavelet-packet representation of natural and GAN-generated images. Our lightweight forensic classifiers exhibit competitive or improved performance at comparatively small network sizes, as we demonstrate on the FFHQ, CelebA and LSUN source identification problems. Furthermore, we study the binary FaceForensics++ fake-detection problem.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here