Wasserstein PAC-Bayes Learning: Exploiting Optimisation Guarantees to Explain Generalisation

14 Apr 2023  ·  Maxime Haddouche, Benjamin Guedj ·

PAC-Bayes learning is an established framework to both assess the generalisation ability of learning algorithms, and design new learning algorithm by exploiting generalisation bounds as training objectives. Most of the exisiting bounds involve a \emph{Kullback-Leibler} (KL) divergence, which fails to capture the geometric properties of the loss function which are often useful in optimisation. We address this by extending the emerging \emph{Wasserstein PAC-Bayes} theory. We develop new PAC-Bayes bounds with Wasserstein distances replacing the usual KL, and demonstrate that sound optimisation guarantees translate to good generalisation abilities. In particular we provide generalisation bounds for the \emph{Bures-Wasserstein SGD} by exploiting its optimisation properties.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here