Wasserstein Distributionally Robust Regret-Optimal Control in the Infinite-Horizon

28 Dec 2023  ·  Taylan Kargin, Joudi Hajar, Vikrant Malik, Babak Hassibi ·

We investigate the Distributionally Robust Regret-Optimal (DR-RO) control of discrete-time linear dynamical systems with quadratic cost over an infinite horizon. Regret is the difference in cost obtained by a causal controller and a clairvoyant controller with access to future disturbances. We focus on the infinite-horizon framework, which results in stability guarantees. In this DR setting, the probability distribution of the disturbances resides within a Wasserstein-2 ambiguity set centered at a specified nominal distribution. Our objective is to identify a control policy that minimizes the worst-case expected regret over an infinite horizon, considering all potential disturbance distributions within the ambiguity set. In contrast to prior works, which assume time-independent disturbances, we relax this constraint to allow for time-correlated disturbances, thus actual distributional robustness. While we show that the resulting optimal controller is non-rational and lacks a finite-dimensional state-space realization, we demonstrate that it can still be uniquely characterized by a finite dimensional parameter. Exploiting this fact, we introduce an efficient numerical method to compute the controller in the frequency domain using fixed-point iterations. This method circumvents the computational bottleneck associated with the finite-horizon problem, where the semi-definite programming (SDP) solution dimension scales with the time horizon. Numerical experiments demonstrate the effectiveness and performance of our framework.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods