Using quantum computers in control: interval matrix properties

26 Mar 2024  ·  Jan Schneider, Julian Berberich ·

Quantum computing provides a powerful framework for tackling computational problems that are classically intractable. The goal of this paper is to explore the use of quantum computers for solving relevant problems in systems and control theory. In the recent literature, different quantum algorithms have been developed to tackle binary optimization, which plays an important role in various control-theoretic problems. As a prototypical example, we consider the verification of interval matrix properties such as non-singularity and stability on a quantum computer. We present a quantum algorithm solving these problems and we study its performance in simulation. Our results demonstrate that quantum computers provide a promising tool for control whose applicability to further computationally complex problems remains to be explored.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here