Unrolled, model-based networks for lensless imaging

We develop end-to-end learned reconstructions for lensless mask-based cameras, including an experimental system for capturing aligned lensless and lensed images for training. Various reconstruction methods are explored, on a scale from classic iterative approaches (based on the physical imaging model) to deep learned methods with many learned parameters. In the middle ground, we present several variations of unrolled alternating direction method of multipliers (ADMM) with varying numbers of learned parameters. The network structure combines knowledge of the physical imaging model with learned parameters updated from the data, which compensate for artifacts caused by physical approximations. Our unrolled approach is 20X faster than classic methods and produces better reconstruction quality than both the classic and deep methods on our experimental system.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here