UniRPG: Unified Discrete Reasoning over Table and Text as Program Generation

15 Oct 2022  ·  Yongwei Zhou, Junwei Bao, Chaoqun Duan, Youzheng Wu, Xiaodong He, Tiejun Zhao ·

Question answering requiring discrete reasoning, e.g., arithmetic computing, comparison, and counting, over knowledge is a challenging task. In this paper, we propose UniRPG, a semantic-parsing-based approach advanced in interpretability and scalability, to perform unified discrete reasoning over heterogeneous knowledge resources, i.e., table and text, as program generation. Concretely, UniRPG consists of a neural programmer and a symbolic program executor, where a program is the composition of a set of pre-defined general atomic and higher-order operations and arguments extracted from table and text. First, the programmer parses a question into a program by generating operations and copying arguments, and then the executor derives answers from table and text based on the program. To alleviate the costly program annotation issue, we design a distant supervision approach for programmer learning, where pseudo programs are automatically constructed without annotated derivations. Extensive experiments on the TAT-QA dataset show that UniRPG achieves tremendous improvements and enhances interpretability and scalability compared with state-of-the-art methods, even without derivation annotation. Moreover, it achieves promising performance on the textual dataset DROP without derivations.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here