Paper

Uncertainty Estimation and Quantification for LLMs: A Simple Supervised Approach

Large language models (LLMs) are highly capable of many tasks but they can sometimes generate unreliable or inaccurate outputs. To tackle this issue, this paper studies the problem of uncertainty estimation and calibration for LLMs. We begin by formulating the uncertainty estimation problem for LLMs and then propose a supervised approach that takes advantage of the labeled datasets and estimates the uncertainty of the LLMs' responses. Based on the formulation, we illustrate the difference between the uncertainty estimation for LLMs and that for standard ML models and explain why the hidden activations of the LLMs contain uncertainty information. Our designed approach effectively demonstrates the benefits of utilizing hidden activations for enhanced uncertainty estimation across various tasks and shows robust transferability in out-of-distribution settings. Moreover, we distinguish the uncertainty estimation task from the uncertainty calibration task and show that a better uncertainty estimation mode leads to a better calibration performance. In practice, our method is easy to implement and is adaptable to different levels of model transparency including black box, grey box, and white box, each demonstrating strong performance based on the accessibility of the LLM's internal mechanisms.

Results in Papers With Code
(↓ scroll down to see all results)