Paper

Low Dimensional Landscape Hypothesis is True: DNNs can be Trained in Tiny Subspaces

Deep neural networks (DNNs) usually contain massive parameters, but there is redundancy such that it is guessed that the DNNs could be trained in low-dimensional subspaces. In this paper, we propose a Dynamic Linear Dimensionality Reduction (DLDR) based on low-dimensional properties of the training trajectory. The reduction is efficient, which is supported by comprehensive experiments: optimization in 40 dimensional spaces can achieve comparable performance as regular training over thousands or even millions of parameters. Since there are only a few optimization variables, we develop a quasi-Newton-based algorithm and also obtain robustness against label noises, which are two follow-up experiments to show the advantages of finding low-dimensional subspaces.

Results in Papers With Code
(↓ scroll down to see all results)