Towards Problem-dependent Optimal Learning Rates

NeurIPS 2020  ·  Yunbei Xu, Assaf Zeevi ·

We study problem-dependent rates, i.e., generalization errors that scale tightly with the variance or the effective loss at the "best hypothesis." Existing uniform convergence and localization frameworks, the most widely used tools to study this problem, often fail to simultaneously provide parameter localization and optimal dependence on the sample size. As a result, existing problem-dependent rates are often rather weak when the hypothesis class is "rich" and the worst-case bound of the loss is large. In this paper we propose a new framework based on a "uniform localized convergence" principle. We provide the first (moment-penalized) estimator that achieves the optimal variance-dependent rate for general "rich" classes; we also establish improved loss-dependent rate for standard empirical risk minimization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here