Paper

Towards Optimal Neural Networks: the Role of Sample Splitting in Hyperparameter Selection

When artificial neural networks have demonstrated exceptional practical success in a variety of domains, investigations into their theoretical characteristics, such as their approximation power, statistical properties, and generalization performance, have concurrently made significant strides. In this paper, we construct a novel theory for understanding the effectiveness of neural networks, which offers a perspective distinct from prior research. Specifically, we explore the rationale underlying a common practice during the construction of neural network models: sample splitting. Our findings indicate that the optimal hyperparameters derived from sample splitting can enable a neural network model that asymptotically minimizes the prediction risk. We conduct extensive experiments across different application scenarios and network architectures, and the results manifest our theory's effectiveness.

Results in Papers With Code
(↓ scroll down to see all results)