Towards Improving the Trustworthiness of Hardware based Malware Detector using Online Uncertainty Estimation

21 Mar 2021  ·  Harshit Kumar, Nikhil Chawla, Saibal Mukhopadhyay ·

Hardware-based Malware Detectors (HMDs) using Machine Learning (ML) models have shown promise in detecting malicious workloads. However, the conventional black-box based machine learning (ML) approach used in these HMDs fail to address the uncertain predictions, including those made on zero-day malware. The ML models used in HMDs are agnostic to the uncertainty that determines whether the model "knows what it knows," severely undermining its trustworthiness. We propose an ensemble-based approach that quantifies uncertainty in predictions made by ML models of an HMD, when it encounters an unknown workload than the ones it was trained on. We test our approach on two different HMDs that have been proposed in the literature. We show that the proposed uncertainty estimator can detect >90% of unknown workloads for the Power-management based HMD, and conclude that the overlapping benign and malware classes undermine the trustworthiness of the Performance Counter-based HMD.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here