Towards end-to-end optimisation of functional image analysis pipelines

13 Oct 2016  ·  Albert Vilamala, Kristoffer Hougaard Madsen, Lars Kai Hansen ·

The study of neurocognitive tasks requiring accurate localisation of activity often rely on functional Magnetic Resonance Imaging, a widely adopted technique that makes use of a pipeline of data processing modules, each involving a variety of parameters. These parameters are frequently set according to the local goal of each specific module, not accounting for the rest of the pipeline. Given recent success of neural network research in many different domains, we propose to convert the whole data pipeline into a deep neural network, where the parameters involved are jointly optimised by the network to best serve a common global goal. As a proof of concept, we develop a module able to adaptively apply the most suitable spatial smoothing to every brain volume for each specific neuroimaging task, and we validate its results in a standard brain decoding experiment.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here