Towards Discrete Solution: A Sparse Preserving Method for Correspondence Problem

20 Sep 2018  ·  Bo Jiang ·

Many problems of interest in computer vision can be formulated as a problem of finding consistent correspondences between two feature sets. Feature correspondence (matching) problem with one-to-one mapping constraint is usually formulated as an Integral Quadratic Programming (IQP) problem with permutation (or orthogonal) constraint. Since it is NP-hard, relaxation models are required. One main challenge for optimizing IQP matching problem is how to incorporate the discrete one-to-one mapping (permutation) constraint in its quadratic objective optimization. In this paper, we present a new relaxation model, called Sparse Constraint Preserving Matching (SPM), for IQP matching problem. SPM is motivated by our observation that the discrete permutation constraint can be well encoded via a sparse constraint. Comparing with traditional relaxation models, SPM can incorporate the discrete one-to-one mapping constraint straightly via a sparse constraint and thus provides a tighter relaxation for original IQP matching problem. A simple yet effective update algorithm has been derived to solve the proposed SPM model. Experimental results on several feature matching tasks demonstrate the effectiveness and efficiency of SPM method.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here