Towards a variational Jordan-Lee-Preskill quantum algorithm

12 Sep 2021  ·  Junyu Liu, Zimu Li, Han Zheng, Xiao Yuan, Jinzhao Sun ·

Rapid developments of quantum information technology show promising opportunities for simulating quantum field theory in near-term quantum devices. In this work, we formulate the theory of (time-dependent) variational quantum simulation of the 1+1 dimensional $\lambda \phi^4$ quantum field theory including encoding, state preparation, and time evolution, with several numerical simulation results. These algorithms could be understood as near-term variational quantum circuit (quantum neural network) analogs of the Jordan-Lee-Preskill algorithm, the basic algorithm for simulating quantum field theory using universal quantum devices. Besides, we highlight the advantages of encoding with harmonic oscillator basis based on the LSZ reduction formula and several computational efficiency such as when implementing a bosonic version of the unitary coupled cluster ansatz to prepare initial states. We also discuss how to circumvent the "spectral crowding" problem in the quantum field theory simulation and appraise our algorithm by both state and subspace fidelities.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here