Towards a prioritised use of transportation infrastructures: the case of vehicle-specific dynamic access restrictions to city centres

One of the main problems that local authorities of large cities have to face is the regulation of urban mobility. They need to provide the means to allow for the efficient movement of people and distribution of goods. However, the provisioning of transportation services needs to take into account general global objectives, like reducing emissions and having more healthy living environments, which may not always be aligned with individual interests. Urban mobility is usually provided through a transport infrastructure that includes all the elements that support mobility. On many occasions, the capacity of the elements of this infrastructure is lower than the actual demand and thus different transportation activities compete for their use. In this paper, we argue that scarce transport infrastructure elements should be assigned dynamically and in a prioritised manner to transport activities that have a higher utility from the point of view of society; for example, activities that produce less pollution and provide more value to society. In this paper, we define a general model for prioritizing the use of a particular type of transportation infrastructure element called time-unlimited elements, whose usage time is unknown a priori, and illustrate its dynamics through two use cases: vehicle-specific dynamic access restriction in city centres (i) based on the usage levels of available parking spaces and (ii) to assure sustained admissible air quality levels in the city centre. We carry out several experiments using the SUMO traffic simulation tool to evaluate our proposal.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here