TinyProp -- Adaptive Sparse Backpropagation for Efficient TinyML On-device Learning

17 Aug 2023  ·  Marcus Rüb, Daniel Maier, Daniel Mueller-Gritschneder, Axel Sikora ·

Training deep neural networks using backpropagation is very memory and computationally intensive. This makes it difficult to run on-device learning or fine-tune neural networks on tiny, embedded devices such as low-power micro-controller units (MCUs). Sparse backpropagation algorithms try to reduce the computational load of on-device learning by training only a subset of the weights and biases. Existing approaches use a static number of weights to train. A poor choice of this so-called backpropagation ratio limits either the computational gain or can lead to severe accuracy losses. In this paper we present TinyProp, the first sparse backpropagation method that dynamically adapts the back-propagation ratio during on-device training for each training step. TinyProp induces a small calculation overhead to sort the elements of the gradient, which does not significantly impact the computational gains. TinyProp works particularly well on fine-tuning trained networks on MCUs, which is a typical use case for embedded applications. For typical datasets from three datasets MNIST, DCASE2020 and CIFAR10, we are 5 times faster compared to non-sparse training with an accuracy loss of on average 1%. On average, TinyProp is 2.9 times faster than existing, static sparse backpropagation algorithms and the accuracy loss is reduced on average by 6 % compared to a typical static setting of the back-propagation ratio.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here