The robust way to stack and bag: the local Lipschitz way

1 Jun 2022  ·  Thulasi Tholeti, Sheetal Kalyani ·

Recent research has established that the local Lipschitz constant of a neural network directly influences its adversarial robustness. We exploit this relationship to construct an ensemble of neural networks which not only improves the accuracy, but also provides increased adversarial robustness. The local Lipschitz constants for two different ensemble methods - bagging and stacking - are derived and the architectures best suited for ensuring adversarial robustness are deduced. The proposed ensemble architectures are tested on MNIST and CIFAR-10 datasets in the presence of white-box attacks, FGSM and PGD. The proposed architecture is found to be more robust than a) a single network and b) traditional ensemble methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here