The $L^\infty$ Learnability of Reproducing Kernel Hilbert Spaces

5 Jun 2023  ·  Hongrui Chen, Jihao Long, Lei Wu ·

In this work, we analyze the learnability of reproducing kernel Hilbert spaces (RKHS) under the $L^\infty$ norm, which is critical for understanding the performance of kernel methods and random feature models in safety- and security-critical applications. Specifically, we relate the $L^\infty$ learnability of a RKHS to the spectrum decay of the associate kernel and both lower bounds and upper bounds of the sample complexity are established. In particular, for dot-product kernels on the sphere, we identify conditions when the $L^\infty$ learning can be achieved with polynomial samples. Let $d$ denote the input dimension and assume the kernel spectrum roughly decays as $\lambda_k\sim k^{-1-\beta}$ with $\beta>0$. We prove that if $\beta$ is independent of the input dimension $d$, then functions in the RKHS can be learned efficiently under the $L^\infty$ norm, i.e., the sample complexity depends polynomially on $d$. In contrast, if $\beta=1/\mathrm{poly}(d)$, then the $L^\infty$ learning requires exponentially many samples.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here