The Computational Complexity of Fire Emblem Series and similar Tactical Role-Playing Games

16 Sep 2019  ·  Jiawei Gao ·

Fire Emblem (FE) is a popular turn-based tactical role-playing game (TRPG) series on the Nintendo gaming consoles. This paper studies the computational complexity of a simplified version of FE (only floor tiles and wall tiles, the HP and other attributes of characters are constants at most 8, the movement distance per character each turn is fixed to 6 tiles), and proves that: 1. Simplified FE is PSPACE-complete (Thus actual FE is at least as hard). 2. Poly-round FE is NP-complete, even when the map is cycle-free, without healing units, and the weapon durability is a small constant. Poly-round FE is to decide whether the player can win the game in a certain number of rounds that is polynomial to the map size. A map is called cycle-free if its corresponding planar graph is cycle-free. These hardness results also hold for other similar TRPG series, such as Final Fantasy Tactics, Tactics Ogre and Disgaea.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here