SynergicLearning: Neural Network-Based Feature Extraction for Highly-Accurate Hyperdimensional Learning

30 Jul 2020  ·  Mahdi Nazemi, Amirhossein Esmaili, Arash Fayyazi, Massoud Pedram ·

Machine learning models differ in terms of accuracy, computational/memory complexity, training time, and adaptability among other characteristics. For example, neural networks (NNs) are well-known for their high accuracy due to the quality of their automatic feature extraction while brain-inspired hyperdimensional (HD) learning models are famous for their quick training, computational efficiency, and adaptability. This work presents a hybrid, synergic machine learning model that excels at all the said characteristics and is suitable for incremental, on-line learning on a chip. The proposed model comprises an NN and a classifier. The NN acts as a feature extractor and is specifically trained to work well with the classifier that employs the HD computing framework. This work also presents a parameterized hardware implementation of the said feature extraction and classification components while introducing a compiler that maps any arbitrary NN and/or classifier to the aforementioned hardware. The proposed hybrid machine learning model has the same level of accuracy (i.e. $\pm$1%) as NNs while achieving at least 10% improvement in accuracy compared to HD learning models. Additionally, the end-to-end hardware realization of the hybrid model improves power efficiency by 1.60x compared to state-of-the-art, high-performance HD learning implementations while improving latency by 2.13x. These results have profound implications for the application of such synergic models in challenging cognitive tasks.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here