Symmetry-based Abstraction Algorithm for Accelerating Symbolic Control Synthesis

18 Mar 2024  ·  Hussein Sibai, Sacha Huriot, Tyler Martin, Murat Arcak ·

We propose an efficient symbolic control synthesis algorithm for equivariant continuous-time dynamical systems to satisfy reach-avoid specifications. The algorithm exploits dynamical symmetries to construct lean abstractions to avoid redundant computations during synthesis. Our proposed algorithm adds another layer of abstraction over the common grid-based discrete abstraction before solving the synthesis problem. It combines each set of grid cells that are at a similar relative position from the targets and nearby obstacles, defined by the symmetries, into a single abstract state. It uses this layer of abstraction to guide the order by which actions are explored during synthesis over the grid-based abstraction. We demonstrate the potential of our algorithm by synthesizing a reach-avoid controller for a 3-dimensional ship model with translation and rotation symmetries in the special Euclidean group SE(2).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here