Data-Adaptive Graph Framelets with Generalized Vanishing Moments for Graph Signal Processing

7 Sep 2023  ·  Ruigang Zheng, Xiaosheng Zhuang ·

In this paper, we propose a novel and general framework to construct tight framelet systems on graphs with localized supports based on hierarchical partitions. Our construction provides parametrized graph framelet systems with great generality based on partition trees, by which we are able to find the size of a low-dimensional subspace that best fits the low-rank structure of a family of signals. The orthogonal decomposition of subspaces provides a key ingredient for the definition of "generalized vanishing moments" for graph framelets. In a data-adaptive setting, the graph framelet systems can be learned by solving an optimization problem on Stiefel manifolds with respect to our parameterization. Moreover, such graph framelet systems can be further improved by solving a subsequent optimization problem on Stiefel manifolds, aiming at providing the utmost sparsity for a given family of graph signals. Experimental results show that our learned graph framelet systems perform superiorly in non-linear approximation and denoising tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here