Structural equations and divisive normalization for energy-dependent component analysis

NeurIPS 2011  ·  Jun-Ichiro Hirayama, Aapo Hyvärinen ·

Components estimated by independent component analysis and related methods are typically not independent in real data. A very common form of nonlinear dependency between the components is correlations in their variances or ener- gies. Here, we propose a principled probabilistic model to model the energy- correlations between the latent variables. Our two-stage model includes a linear mixing of latent signals into the observed ones like in ICA. The main new fea- ture is a model of the energy-correlations based on the structural equation model (SEM), in particular, a Linear Non-Gaussian SEM. The SEM is closely related to divisive normalization which effectively reduces energy correlation. Our new two- stage model enables estimation of both the linear mixing and the interactions re- lated to energy-correlations, without resorting to approximations of the likelihood function or other non-principled approaches. We demonstrate the applicability of our method with synthetic dataset, natural images and brain signals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods