Streaming Lossless Volumetric Compression of Medical Images Using Gated Recurrent Convolutional Neural Network

27 Nov 2023  ·  Qianhao Chen, Jietao Chen ·

Deep learning-based lossless compression methods offer substantial advantages in compressing medical volumetric images. Nevertheless, many learning-based algorithms encounter a trade-off between practicality and compression performance. This paper introduces a hardware-friendly streaming lossless volumetric compression framework, utilizing merely one-thousandth of the model weights compared to other learning-based compression frameworks. We propose a gated recurrent convolutional neural network that combines diverse convolutional structures and fusion gate mechanisms to capture the inter-slice dependencies in volumetric images. Based on such contextual information, we can predict the pixel-by-pixel distribution for entropy coding. Guided by hardware/software co-design principles, we implement the proposed framework on Field Programmable Gate Array to achieve enhanced real-time performance. Extensive experimental results indicate that our method outperforms traditional lossless volumetric compressors and state-of-the-art learning-based lossless compression methods across various medical image benchmarks. Additionally, our method exhibits robust generalization ability and competitive compression speed

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here