Stealthy Imitation: Reward-guided Environment-free Policy Stealing

11 May 2024  ·  Zhixiong Zhuang, Maria-Irina Nicolae, Mario Fritz ·

Deep reinforcement learning policies, which are integral to modern control systems, represent valuable intellectual property. The development of these policies demands considerable resources, such as domain expertise, simulation fidelity, and real-world validation. These policies are potentially vulnerable to model stealing attacks, which aim to replicate their functionality using only black-box access. In this paper, we propose Stealthy Imitation, the first attack designed to steal policies without access to the environment or knowledge of the input range. This setup has not been considered by previous model stealing methods. Lacking access to the victim's input states distribution, Stealthy Imitation fits a reward model that allows to approximate it. We show that the victim policy is harder to imitate when the distribution of the attack queries matches that of the victim. We evaluate our approach across diverse, high-dimensional control tasks and consistently outperform prior data-free approaches adapted for policy stealing. Lastly, we propose a countermeasure that significantly diminishes the effectiveness of the attack.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here