State Constrained Stochastic Optimal Control for Continuous and Hybrid Dynamical Systems Using DFBSDE

11 May 2023  ·  Bolun Dai, Prashanth Krishnamurthy, Andrew Papanicolaou, Farshad Khorrami ·

We develop a computationally efficient learning-based forward-backward stochastic differential equations (FBSDE) controller for both continuous and hybrid dynamical (HD) systems subject to stochastic noise and state constraints. Solutions to stochastic optimal control (SOC) problems satisfy the Hamilton-Jacobi-Bellman (HJB) equation. Using current FBSDE-based solutions, the optimal control can be obtained from the HJB equations using deep neural networks (e.g., long short-term memory (LSTM) networks). To ensure the learned controller respects the constraint boundaries, we enforce the state constraints using a soft penalty function. In addition to previous works, we adapt the deep FBSDE (DFBSDE) control framework to handle HD systems consisting of continuous dynamics and a deterministic discrete state change. We demonstrate our proposed algorithm in simulation on a continuous nonlinear system (cart-pole) and a hybrid nonlinear system (five-link biped).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here