Spiking neural state machine for gait frequency entrainment in a flexible modular robot

14 Jul 2020  ·  Alex Spaeth, Maryam Tebyani, David Haussler, Mircea Teodorescu ·

We propose a modular architecture for neuromorphic closed-loop control based on bistable relaxation oscillator modules consisting of three spiking neurons each. Like its biological prototypes, this basic component is robust to parameter variation but can be modulated by external inputs. By combining these modules, we can construct a neural state machine capable of generating the cyclic or repetitive behaviors necessary for legged locomotion. A concrete case study for the approach is provided by a modular robot constructed from flexible plastic volumetric pixels, in which we produce a forward crawling gait entrained to the natural frequency of the robot by a minimal system of twelve neurons organized into four modules.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here