Sparse hierarchical interaction learning with epigraphical projection

22 May 2017  ·  Mingyuan Jiu, Nelly Pustelnik, Stefan Janaqi, Mériam Chebre, Lin Qi, Philippe Ricoux ·

This work focuses on learning optimization problems with quadratical interactions between variables, which go beyond the additive models of traditional linear learning. We investigate more specifically two different methods encountered in the literature to deal with this problem: "hierNet" and structured-sparsity regularization, and study their connections. We propose a primal-dual proximal algorithm based on an epigraphical projection to optimize a general formulation of these learning problems. The experimental setting first highlights the improvement of the proposed procedure compared to state-of-the-art methods based on fast iterative shrinkage-thresholding algorithm (i.e. FISTA) or alternating direction method of multipliers (i.e. ADMM), and then, using the proposed flexible optimization framework, we provide fair comparisons between the different hierarchical penalizations and their improvement over the standard $\ell_1$-norm penalization. The experiments are conducted both on synthetic and real data, and they clearly show that the proposed primal-dual proximal algorithm based on epigraphical projection is efficient and effective to solve and investigate the problem of hierarchical interaction learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here