Solving Decision-Dependent Games by Learning from Feedback

29 Dec 2023  ·  Killian Wood, Ahmed Zamzam, Emiliano Dall'Anese ·

This paper tackles the problem of solving stochastic optimization problems with a decision-dependent distribution in the setting of stochastic strongly-monotone games and when the distributional dependence is unknown. A two-stage approach is proposed, which initially involves estimating the distributional dependence on decision variables, and subsequently optimizing over the estimated distributional map. The paper presents guarantees for the approximation of the cost of each agent. Furthermore, a stochastic gradient-based algorithm is developed and analyzed for finding the Nash equilibrium in a distributed fashion. Numerical simulations are provided for a novel electric vehicle charging market formulation using real-world data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here