Adversarial random forests for density estimation and generative modeling

19 May 2022  ·  David S. Watson, Kristin Blesch, Jan Kapar, Marvin N. Wright ·

We propose methods for density estimation and data synthesis using a novel form of unsupervised random forests. Inspired by generative adversarial networks, we implement a recursive procedure in which trees gradually learn structural properties of the data through alternating rounds of generation and discrimination. The method is provably consistent under minimal assumptions. Unlike classic tree-based alternatives, our approach provides smooth (un)conditional densities and allows for fully synthetic data generation. We achieve comparable or superior performance to state-of-the-art probabilistic circuits and deep learning models on various tabular data benchmarks while executing about two orders of magnitude faster on average. An accompanying $\texttt{R}$ package, $\texttt{arf}$, is available on $\texttt{CRAN}$.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here