Sketched Gaussian Model Linear Discriminant Analysis via the Randomized Kaczmarz Method

10 Nov 2022  ·  Jocelyn T. Chi, Deanna Needell ·

We present sketched linear discriminant analysis, an iterative randomized approach to binary-class Gaussian model linear discriminant analysis (LDA) for very large data. We harness a least squares formulation and mobilize the stochastic gradient descent framework. Therefore, we obtain a randomized classifier with performance that is very comparable to that of full data LDA while requiring access to only one row of the training data at a time. We present convergence guarantees for the sketched predictions on new data within a fixed number of iterations. These guarantees account for both the Gaussian modeling assumptions on the data and algorithmic randomness from the sketching procedure. Finally, we demonstrate performance with varying step-sizes and numbers of iterations. Our numerical experiments demonstrate that sketched LDA can offer a very viable alternative to full data LDA when the data may be too large for full data analysis.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods