Single-Shot Specular Surface Reconstruction With Gonio-Plenoptic Imaging

We present a gonio-plenoptic imaging system that realizes a single-shot shape measurement for specular surfaces. The system is comprised of a collimated illumination source and a plenoptic camera. Unlike a conventional plenoptic camera, our system captures the BRDF variation of the object surface in a single image in addition to the light field information from the scene, which allows us to recover very fine 3D structures of the surface. The shape of the surface is reconstructed based on the reflectance property of the material rather than the parallax between different views. Since only a single-shot is required to reconstruct the whole surface, our system is able to capture dynamic surface deformation in a video mode. We also describe a novel calibration technique that maps the light field viewing directions from the object space to subpixels on the sensor plane. The proposed system is evaluated using a concave mirror with known curvature, and is compared to a parabolic mirror scanning system as well as a multi-illumination photometric stereo approach based on simulations and experiments.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here