Simplified Performance Analysis of OWC System Over Atmospheric Turbulence with Pointing Error

15 Jul 2020  ·  Kartik Wardhan, S. M. Zafaruddin ·

Optical wireless communication (OWC) is highly vulnerable to the atmospheric turbulence and pointing error. Performance analysis of the OWC system under the combined channel effects of pointing errors and atmospheric turbulence is desirable for its efficient deployment. The widely used Gamma- Gamma statistical model for atmospheric turbulence, which consists of Bessel function, generally leads to complicated analytical expressions. In this paper, we consider the three-parameter exponentiated Weibull model for the atmospheric turbulence to analyze the ergodic rate and average signal-to-noise ratio (SNR) performance of a single-link OWC system. We derive simplified analytical expressions on the performance under the combined effect of atmospheric turbulence and pointing errors in terms of system parameters. We also derive approximate expressions on the performance under the atmospheric turbulence by considering negligible pointing error. In order to evaluate the performance at high SNR, we also develop asymptotic bounds on the average SNR and ergodic rate for the considered system. We demonstrate the tightness of derived expressions through numerical and simulation analysis along with a comparison to the performance obtained using the Gamma-Gamma model.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here