Signaling activations through G-protein-coupled-receptor aggregations

Eukaryotic cells transmit extracellular signal information to cellular interiors through the formation of a ternary complex made up of a ligand (or agonist), G-protein, and G-protein coupled receptor (GPCR). Previously formalized theories of ternary complex formation have mainly assumed that observable states of receptors can only take the form of monomers. Here, we propose a multiary complex model of GPCR signaling activations via the vector representation of various unobserved aggregated receptor states. Our results from model simulations imply that receptor aggregation processes can govern cooperative effects in a regime inaccessible by previous theories. In particular, we show how the affinity of ligand-receptor binding can be largely varied by various oligomer formations in the low concentration range of G-protein stimulus.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here