Shaping of Magnetic Field Coils in Fusion Reactors using Bayesian Optimisation

2 Oct 2023  ·  Timothy Nunn, Vignesh Gopakumar, Sebastien Kahn ·

Nuclear fusion using magnetic confinement holds promise as a viable method for sustainable energy. However, most fusion devices have been experimental and as we move towards energy reactors, we are entering into a new paradigm of engineering. Curating a design for a fusion reactor is a high-dimensional multi-output optimisation process. Through this work we demonstrate a proof-of-concept of an AI-driven strategy to help explore the design search space and identify optimum parameters. By utilising a Multi-Output Bayesian Optimisation scheme, our strategy is capable of identifying the Pareto front associated with the optimisation of the toroidal field coil shape of a tokamak. The optimisation helps to identify design parameters that would minimise the costs incurred while maximising the plasma stability by way of minimising magnetic ripples.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here