Paper

Separable Four Points Fundamental Matrix

We present a novel approach for RANSAC-based computation of the fundamental matrix based on epipolar homography decomposition. We analyze the geometrical meaning of the decomposition-based representation and show that it directly induces a consecutive sampling strategy of two independent sets of correspondences. We show that our method guarantees a minimal number of evaluated hypotheses with respect to current minimal approaches, on the condition that there are four correspondences on an image line. We validate our approach on real-world image pairs, providing fast and accurate results.

Results in Papers With Code
(↓ scroll down to see all results)