Semantic-Aware Image Compressed Sensing

6 Jul 2023  ·  BoWen Zhang, Zhijin Qin, Geoffrey Ye Li ·

Deep learning based image compressed sensing (CS) has achieved great success. However, existing CS systems mainly adopt a fixed measurement matrix to images, ignoring the fact the optimal measurement numbers and bases are different for different images. To further improve the sensing efficiency, we propose a novel semantic-aware image CS system. In our system, the encoder first uses a fixed number of base CS measurements to sense different images. According to the base CS results, the encoder then employs a policy network to analyze the semantic information in images and determines the measurement matrix for different image areas. At the decoder side, a semantic-aware initial reconstruction network is developed to deal with the changes of measurement matrices used at the encoder. A rate-distortion training loss is further introduced to dynamically adjust the average compression ratio for the semantic-aware CS system and the policy network is trained jointly with the encoder and the decoder in an en-to-end manner by using some proxy functions. Numerical results show that the proposed semantic-aware image CS system is superior to the traditional ones with fixed measurement matrices.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods