Evaluating feasibility of batteries for second-life applications using machine learning

8 Mar 2022  ·  Aki Takahashi, Anirudh Allam, Simona Onori ·

This paper presents a combination of machine learning techniques to enable prompt evaluation of retired electric vehicle batteries as to either retain those batteries for a second-life application and extend their operation beyond the original and first intent or send them to recycle facilities. The proposed algorithm generates features from available battery current and voltage measurements with simple statistics, selects and ranks the features using correlation analysis, and employs Gaussian Process Regression enhanced with bagging. This approach is validated over publicly available aging datasets of more than 200 cells with slow and fast charging, with different cathode chemistries, and for diverse operating conditions. Promising results are observed based on multiple training-test partitions, wherein the mean of Root Mean Squared Percent Error and Mean Percent Error performance errors are found to be less than 1.48% and 1.29%, respectively, in the worst-case scenarios.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here