Scaling laws for learning with real and surrogate data

6 Feb 2024  ·  Ayush Jain, Andrea Montanari, Eren Sasoglu ·

Collecting large quantities of high-quality data is often prohibitively expensive or impractical, and a crucial bottleneck in machine learning. One may instead augment a small set of $n$ data points from the target distribution with data from more accessible sources like public datasets, data collected under different circumstances, or synthesized by generative models. Blurring distinctions, we refer to such data as `surrogate data'. We define a simple scheme for integrating surrogate data into training and use both theoretical models and empirical studies to explore its behavior. Our main findings are: $(i)$ Integrating surrogate data can significantly reduce the test error on the original distribution; $(ii)$ In order to reap this benefit, it is crucial to use optimally weighted empirical risk minimization; $(iii)$ The test error of models trained on mixtures of real and surrogate data is well described by a scaling law. This can be used to predict the optimal weighting and the gain from surrogate data.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here