Scale-Aware Neural Architecture Search for Multivariate Time Series Forecasting

14 Dec 2021  ·  Donghui Chen, Ling Chen, Zongjiang Shang, Youdong Zhang, Bo Wen, Chenghu Yang ·

Multivariate time series (MTS) forecasting has attracted much attention in many intelligent applications. It is not a trivial task, as we need to consider both intra-variable dependencies and inter-variable dependencies. However, existing works are designed for specific scenarios, and require much domain knowledge and expert efforts, which is difficult to transfer between different scenarios. In this paper, we propose a scale-aware neural architecture search framework for MTS forecasting (SNAS4MTF). A multi-scale decomposition module transforms raw time series into multi-scale sub-series, which can preserve multi-scale temporal patterns. An adaptive graph learning module infers the different inter-variable dependencies under different time scales without any prior knowledge. For MTS forecasting, a search space is designed to capture both intra-variable dependencies and inter-variable dependencies at each time scale. The multi-scale decomposition, adaptive graph learning, and neural architecture search modules are jointly learned in an end-to-end framework. Extensive experiments on two real-world datasets demonstrate that SNAS4MTF achieves a promising performance compared with the state-of-the-art methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here