SBFT: a Scalable and Decentralized Trust Infrastructure

4 Apr 2018  ·  Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas, Michael K. Reiter, Dragos-Adrian Seredinschi, Orr Tamir, Alin Tomescu ·

SBFT is a state of the art Byzantine fault tolerant permissioned blockchain system that addresses the challenges of scalability, decentralization and world-scale geo-replication. SBFTis optimized for decentralization and can easily handle more than 200 active replicas in a real world-scale deployment. We evaluate \sysname in a world-scale geo-replicated deployment with 209 replicas withstanding f=64 Byzantine failures. We provide experiments that show how the different algorithmic ingredients of \sysname increase its performance and scalability. The results show that SBFT simultaneously provides almost 2x better throughput and about 1.5x better latency relative to a highly optimized system that implements the PBFT protocol. To achieve this performance improvement, SBFT uses a combination of four ingredients: using collectors and threshold signatures to reduce communication to linear, using an optimistic fast path, reducing client communication and utilizing redundant servers for the fast path.

PDF Abstract

Categories


Distributed, Parallel, and Cluster Computing

Datasets


  Add Datasets introduced or used in this paper