Sampling-based Reactive Synthesis for Nondeterministic Hybrid Systems

14 Apr 2023  ·  Qi Heng Ho, Zachary N. Sunberg, Morteza Lahijanian ·

This paper introduces a sampling-based strategy synthesis algorithm for nondeterministic hybrid systems with complex continuous dynamics under temporal and reachability constraints. We model the evolution of the hybrid system as a two-player game, where the nondeterminism is an adversarial player whose objective is to prevent achieving temporal and reachability goals. The aim is to synthesize a winning strategy -- a reactive (robust) strategy that guarantees the satisfaction of the goals under all possible moves of the adversarial player. Our proposed approach involves growing a (search) game-tree in the hybrid space by combining sampling-based motion planning with a novel bandit-based technique to select and improve on partial strategies. We show that the algorithm is probabilistically complete, i.e., the algorithm will asymptotically almost surely find a winning strategy, if one exists. The case studies and benchmark results show that our algorithm is general and effective, and consistently outperforms state of the art algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here