Sample Compression for Real-Valued Learners

21 May 2018  ·  Steve Hanneke, Aryeh Kontorovich, Menachem Sadigurschi ·

We give an algorithmically efficient version of the learner-to-compression scheme conversion in Moran and Yehudayoff (2016). In extending this technique to real-valued hypotheses, we also obtain an efficient regression-to-bounded sample compression converter. To our knowledge, this is the first general compressed regression result (regardless of efficiency or boundedness) guaranteeing uniform approximate reconstruction. Along the way, we develop a generic procedure for constructing weak real-valued learners out of abstract regressors; this may be of independent interest. In particular, this result sheds new light on an open question of H. Simon (1997). We show applications to two regression problems: learning Lipschitz and bounded-variation functions.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here