Robust Safe Control Synthesis with Disturbance Observer-Based Control Barrier Functions

15 Jan 2022  ·  Ersin Daş, Richard M. Murray ·

In a complex real-time operating environment, external disturbances and uncertainties adversely affect the safety, stability, and performance of dynamical systems. This paper presents a robust stabilizing safety-critical controller synthesis framework with control Lyapunov functions (CLFs) and control barrier functions (CBFs) in the presence of disturbance. A high-gain input observer method is adapted to estimate the time-varying unmodelled dynamics of the CBF with an error bound using the first-order time derivative of the CBF. This approach leads to an easily tunable low order disturbance estimator structure with a design parameter as it utilizes only the CBF constraint. The estimated unknown input and associated error bound are used to ensure robust safety and exponential stability by formulating a CLF-CBF quadratic program. The proposed method is applicable to both relative degree one and higher relative degree CBF constraints. The efficacy of the proposed approach is demonstrated using a numerical simulations of an adaptive cruise control system and a Segway platform with an external disturbance.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here